An ATP-dependent L-carnitine transporter in Listeria monocytogenes Scott A is involved in osmoprotection.

نویسندگان

  • A Verheul
  • F M Rombouts
  • R R Beumer
  • T Abee
چکیده

Listeria monocytogenes is a gram-positive, psychotrophic, food-borne pathogen which is able to grow in osmotically stressful environments. Carnitine (beta-hydroxy-L-tau-N-trimethyl aminobutyrate) can contribute significantly to growth of L. monocytogenes at high osmolarity (R. R. Beumer, M. C. te Giffel, L. J. Cox, F. M. Rombouts, and T. Abee, Appl. Environ. Microbiol. 60:1359-1363, 1994). Transport of L-[N-methyl-14C]carnitine in L. monocytogenes was shown to be energy dependent. Analysis of cell extracts revealed that L-carnitine was not further metabolized, which supplies evidence for its role as an osmoprotectant in L. monocytogenes. Uptake of L-carnitine proceeds in the absence of a proton motive force and is strongly inhibited in the presence of the phosphate analogs vanadate and arsenate. The L-carnitine permease is therefore most likely driven by ATP. Kinetic analysis of L-carnitine transport in glucose-energized cells revealed the presence of a high-affinity uptake system with a Km of 10 microM and a maximum rate of transport (Vmax) of 48 nmol min-1 mg of protein-1. L-[14C]carnitine transport in L. monocytogenes is significantly inhibited by a 10-fold excess of unlabelled L-carnitine, acetylcarnitine, and tau-butyrobetaine, whereas L-proline and betaine display, even at a 100-fold excess, only a weak inhibitory effect. In conclusion, an ATP-dependent L-carnitine transport system in L. monocytogenes is described, and its possible roles in cold adaptation and intracellular growth in mammalian cells are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osmoprotection by carnitine in a Listeria monocytogenes mutant lacking the OpuC transporter: evidence for a low affinity carnitine uptake system.

A deletion mutant of Listeria monocytogenes lacking OpuC, an ABC transporter responsible for the uptake of the compatible solute carnitine, was constructed and carnitine transport assays confirmed that carnitine transport was defective in this mutant. However, the mutant retained the ability to derive osmoprotection from carnitine, suggesting the presence of a second uptake system for this comp...

متن کامل

Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals.

The naturally occurring compatible solutes betaine and L-carnitine allow the food-borne pathogen Listeria monocytogenes to adjust to environments of high osmotic strength. Previously, it was demonstrated that L. monocytogenes possesses an ATP-dependent L-carnitine transporter (A. Verheul, F. M. Rombouts, R. R. Beumer, and T. Abee, J. Bacteriol. 177:3205-3212, 1995). The present study reveals th...

متن کامل

Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes.

We identified an operon in Listeria monocytogenes EGD with high levels of sequence similarity to the operons encoding the OpuC and OpuB compatible solute transporters from Bacillus subtilis, which are members of the ATP binding cassette (ABC) substrate binding protein-dependent transporter superfamily. The operon, designated opuC, consists of four genes which are predicted to encode an ATP bind...

متن کامل

Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance.

Listeria monocytogenes is a pathogenic bacterium that can grow at low temperatures and elevated osmolarity. The organism survives these stresses by the intracellular accumulation of osmolytes: low-molecular-weight organic compounds which exert a counterbalancing force. The primary osmolyte in L. monocytogenes is glycine betaine, which is accumulated from the environment via two transport system...

متن کامل

Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function.

The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 177 11  شماره 

صفحات  -

تاریخ انتشار 1995